
Lab Brick Family of RF Switches

API INSTRUCTIONS

Vaunix Technology Corporation

Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

Revision B
March 3, 2023

API Instructions

Lab Brick RF Switch API

1
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

Certification

Vaunix Technology Corporation certifies that this product met its published specifications at the

time of shipment from the factory.

Warranty

Lab Brick Digital Attenuators are warranted against defects in material and workmanship for a

period of one year from the date of shipment.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to connectors that have failed due to normal wear. Also,

the warranty does not apply to defects resulting from improper or inadequate maintenance by the

Buyer, unauthorized modification or

misuse, or operation outside of the environmental specifications of the product.

No other warranty is expressed or implied, and the remedies provided herein are the Buyer’s sole

and exclusive remedies. Vaunix Technology Corporation shall not be liable for any direct,

indirect, special, incidental, or consequential damages, whether based on contract, tort, or any

other legal theory.

NOTICE

Vaunix has prepared this manual for use by Vaunix Company personnel and customers as a guide

for the proper installation, operation, and maintenance of Vaunix equipment and computer

programs. The drawings, specifications, and information contained herein are the property of

Vaunix Technology Corporation, and any unauthorized use or disclosure of these drawings,

specifications, and information is prohibited; they shall not be reproduced, copied, or used in

whole or in part as the basis for manufacture or sale of the equipment or software programs

without the prior written consent of Vaunix Technology Corporation.

API Instructions

Lab Brick RF Switch API

2
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

LabBrick RF Switch API

Overview

The LabBrick RF Switch SDK for Linux supports developers who want to control

LabBrick RFSwitches from Linux programs. For maximum compatibility, the SDK

includes source code forC functions to find, initialize, and control the switches, along

with header files and an example Cprogram which demonstrates the use of the API.

These functions are written to use the 'libusb'library which comes with most Linux

distributions or is easily installed. Many distributions which use a kernel 2.4 or newer

already have this library installed.

Setting up for the SDK

Before you can use the SDK or try the sample program, you need to make sure you have

libusb installed. You can retrieve source from the developer's site at ttp://www.libusb.org,

or use your distribution's package installer. Look for a package that contains “libusb-dev”

in the package name. For Debian and Ubuntu, “libusb-dev” should work. For Redhat and

Fedora, look for “libusb-devel”. If you have the library installed, “locate usb.h” should

turn up an include file in some appropriate location (perhaps '/usr/include') and that file

should have declarations for usb_init(), usb_set_debug(), and usb_find_devices() among

others. Help forums exist for most distributions and someone on one of these forums can

probably help you find the appropriate library. Contact us if you get stuck.

The SDK also uses the Posix thread functions found in the 'pthread' library. Again, most

recent distributions will have this library preinstalled.

Using the SDK

The SDK consists of source code for the SDK functions, a .H header file for your C

program, a sample C program (LSWtest.c) and a Makefile which demonstrates how to

build your code to use the functions. Untar the SDK into a convenient place on your hard

disk (tar –xv Vaunix_LSW_Vxx.tar), and then copy these files into the directory of the

executable program you are creating. Start by trying to build the sample (make all). If the

build is successful, you're ready to add these functions to your own program. Add the

header file (LSWhid.h) to your project and include it with the other header files in your

program. Modify the make file by replacing 'LSWtest' with your program name. Or

simply compile your program with the command line “gcc -o LSWtest -lm -lpthread -lusb
<yourprogram>.c LSWhid.c“ In this case, the compiler will send the final output to

LSW'test', link with the math, thread and usb libraries, and for source will use your

program and the SDK source file, 'LSWhid.c'.

Overall Strategy and API architecture

The API provides functions for identifying how many and what type of LabBrick RF

Switches are connected to the system, initializing the switches so that you can send them

API Instructions

Lab Brick RF Switch API

3
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

commands and read their state, functions to control the operation of the switches, and

finally a function to close the software connection to each switch when you no longer

need to communicate with it.

The API can be operated in a test mode, where the functions will simulate normal

operation but will not actually communicate with the hardware devices. This feature is

provided as a convenience to software developers who may not have a LabBrick RF

Switch with them, but still want to be able to work on an applications program that uses

the LabBrick. Of course, it is important to make sure that the API is in its normal mode in

order to access the actual hardware!

Before you do anything else, you MUST clear the SDK's internal structures. This is

simply a callto fnLSW_Init() and only needs to be done once.

Be sure to call fnLSW_SetTestMode(FALSE), unless of course you want the API to

operate in its test mode. In test mode there will be 2 devices, an LSW-602PDT and an

LSW-602P4T.

The first step in talking to the devices is to identify the RF Switches connected to the

system. Call the function fnLSW_GetNumDevices() to get the number of RF Switches

attached to the system. Note that USB devices can be attached and detached by users at

any time. If you are writing a program which needs to handle the situation where devices

are attached or detached while the program is operating, you should periodically call

fnLSW_GetNumDevices() to see if any new devices have been attached.1

Allocate an array big enough to hold the device ids for the number of devices present.

While you should use the DEVID type declared in LSWhid.h it’s just an array of

unsigned ints at this point. You may want to just allocate an array large enough to hold

MAXDEVICES device ids, so that you do not have to handle the case where the number

of attached devices increases.

Call fnLSW_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the

device ids for each connected RF Switch. The function returns an integer, which is the

number of devices present on the machine.

1 Usually it is a good idea to call fnLSW_GetNumDevices() at around 1 second intervals. While a short

interval reduces the chances, it is still possible that the user will remove one device and replace it with

another however, so to completely handle all the cases which can result from users hot plugging devices

your application needs to check to see not only if the number of devices is different, but if the same number

of devices are present, that they are not different devices.

API Instructions

Lab Brick RF Switch API

4
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

The next step is to call fnLSW_GetModelName(DEVID deviceID, char *ModelName)

with a null ModelName pointer to get the length of the model name, or just use a buffer

that can hold MAX_MODELNAME chars. You can use the model name to identify the

type of RF Switch. Call fnLSW_GetSerialNumber(DEVID deviceID) to get the serial

number of the RF Switch. Based on that information, your program can determine which

device to open.

Once you have identified the RF Switch you want to send commands to, call

fnLSW_InitDevice(DEVID deviceID) to actually open the device and get its various

parameters like the number of switches it has, etc. After the fnLSW_InitDevice function

has completed you can use any of the get functions to read the settings of the RF Switch.

To change one of the settings of the RF Switch, use the corresponding set function. For

example, to set a switch selection, call fnLSW_SetSwitch (DEVID deviceID, int

inputselect). The first argument is the device id of the RF Switch the second is the desired

switch selection. The RF outputs are numbered sequentially from 1 to 4 for the LSW-

602P4T. For the LSW-602PDT the output 1 or 2 can be selected.

When you are done with the device, call fnLSW_CloseDevice(DEVID deviceID).

Status Codes

All of the set functions return a status code indicating whether an error occurred. The get

functions normally return an integer value, but in the event of an error they will return an

error code. The error codes can be distinguished from normal data by their numeric value,

since all error codes have their high bit set, and they are outside of the range of normal

data.

A separate function, fnLSW_GetDeviceStatus(DEVID deviceID) provides access to a set

of status bits describing the operating state of the RF Switch. This function can be used to

check if a device is currently connected or open.

The values of the status codes are defined in the LSWhid.h header file.

Functions – Setting up the environment & housekeeping

void fnLSW_Init(void)

Must be called once at the beginning of the user program to clear out the SDK's

data structures, and initialize the USB library functions.

char* fnLSW_perror(LVSTATUS status)

Useful for debugging your user program, fnLSW_perror() takes a returned

LVSTATUS value from another function and returns a pointer to a descriptive

string you can display on screen or log.

char* fnDA_LibVersion(void)

API Instructions

Lab Brick RF Switch API

5
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

Returns a string which contains the version number of the SDK. If possible, call

this function once when your program starts so you know the version number –

that way, if you have questions or problems, you can include this version

information in your question to us.

Functions – Selecting the Device

void fnLSW_SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the dll does

not communicate with the actual hardware, but simulates the basic operation of

the dll functions. It does not simulate the dynamic operation of the actual

hardware, but it does simulate the behavior of the functions used to set and get the

parameters in the device. Thus API calls which start switch patterns, or pulsed

mode switching, will not cause the same changes in status variables as actual

hardware would.

int fnLSW_GetNumDevices()

This function returns a count of the number of connected LabBrick RF Switch

devices.

int fnLSW_GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the

connected RF Switches. Note that the array must be large enough to hold a device

id for the number of devices returned by fnLSW_GetNumDevices. The function

also returns the number of active devices, which can, under some circumstances,

be less than the number of devices returned in the previous call to

fnLSW_GetNumDevices.

The device ids are used to identify each device, and are used in the rest of the

functions to select the device. Note that while the device ids may be small

integers, and may, in some circumstances appear to be numerically related to the

devices present, they should only be used as opaque handles.

int fnLSW_GetModelName(DEVID deviceID, char *ModelName)

This function is used to get the model name of the RF Switch. If the function is

called with a null pointer, it returns just the length of the model name string. If the

function is called with a non-null string pointer it copies the model name into the

string and returns the length of the string. The string length will never be greater

than the constant MAX_MODELNAME which is defined in LSWhid.h. This

function can be used regardless of whether or not the RF Switch has been

initialized with the fnLSW_InitDevice function.

int fnLSW_GetSerialNumber(DEVID deviceID)

This function is used to get the serial number of the RF Switch. It can be called

regardless of whether or not the RF Switch has been initialized with the

fnLSW_InitDevice function. If your system has multiple RF Switches, your

software should use each device’s serial number to keep track of each specific

device. Do not rely upon the order in which the devices appear in the table of

API Instructions

Lab Brick RF Switch API

6
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

active devices. On a typical system the individual RF Switches will typically be

found in the same order, but there is no guarantee that this will occur.

int fnLSW_GetDeviceStatus(DEVID deviceID)

This function can be used to obtain information about the status of a device, even

before the device is initialized. (Note that information on the dynamic activity of

the device is not guaranteed to be available before the device is initialized.)

int fnLSW_InitDevice(DEVID deviceID)

This function is used to open the device interface to the RF Switch and initialize

the library’s copy of the device’s settings. If the fnLSW_InitDevice function

succeeds, then you can use the various fnLSW_Get* functions to read the RF

Switch’s settings. This function will fail, and return an error code if the RF Switch

has already been opened by another program.

int fnLSW_CloseDevice(DEVID deviceID)

This function closes the device interface to the RF Switch. It should be called

when your program is done using the RF Switch.

Functions – Setting parameters on the switch

int fnLSW_SetSwitch (DEVID deviceID, int select)

This function is used to set the position of the switch. The first argument is the

device id of the RF Switch, the second is the desired switch selection. The RF

outputs are numbered sequentially from 1 to 4 for the LSW-602P4T. For the

LSW-602PDT the output 1 or 2 can be selected.

int fnLSW_SetUseExternalControl (DEVID deviceID, bool external);

This function is used to select internal or external control of the RF Switches. If

external is TRUE, then the Lab Brick RF Switch will be controlled by the external

control signal input or inputs.

int fnLSW_SetPattern(DEVID deviceID, int num_entries, int sw_select[], int holdtime[])

This function sets the parameters for a switch pattern. A switch pattern consists of

a set of pattern elements, where each element defines a switch setting and a hold

time. When the pattern is activated the Lab Brick RF Switch steps through the

pattern elements, waiting for the specified hold time at each step. Hold times are

specified in milliseconds, with the minimum being 1 millisecond. Currently, a

pattern can have at most four entries, so the maximum value for num_entries is 4.

The array of switch selections, sw_select, has one element for each step in the

pattern, and that element holds a switch number from 1 to 4. To start or stop a

pattern use the fnLSW_StartPattern function.

int fnLSW_StartPattern(DEVID deviceID, bool go)

Calling this function with go set to TRUE starts a switch pattern sequence at the

beginning. To stop the pattern, call this function with go set to FALSE.

int fnLSW_SetPatternType(DEVID deviceID, bool continuous)

API Instructions

Lab Brick RF Switch API

7
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

Calling this function with continuous set to TRUE before starting the pattern in

order to have the pattern repeat. If continuous is set to FALSE the pattern will

only run once when it is started.

int fnLSW_SetPatternEntry(DEVID deviceID, int sw_select, int holdtime, int index, bool

last_entry)

This function can be used to set individual elements of the pattern. The argument

sw_select is the switch setting, from 1 to 4. The argument holdtime is the length

of time that the pattern will hold each switch setting, expressed as an integer

number of milliseconds. The argument index is the zero based position in the

pattern, ranging from 0 to 3. The last_entry argument should be set to TRUE only

for the final element in the pattern. For example, the following set of calls define

a pattern with three steps, where switch 1 is active for 1 second, switch 2 is active

for .1 seconds, and switch 3 is active for 10 seconds on device 5:

result = fnLSW_SetPatternEntry(5, 1, 1000, 0, FALSE);

result = fnLSW_SetPatternEntry(5, 2, 100, 1, FALSE);

result = fnLSW_SetPatternEntry(5, 3, 10000, 2, TRUE);

int fnLSW_SetFastPulsedOutput(DEVID deviceID, float pulseontime, float pulsereptime,

bool on)

This function is the preferred way to control the internal pulse switching option.

The pulseontime parameter is the length of the pulse on time (switch 1 active) in

seconds. The pulsereptime parameter is the length of the repetition period in

seconds. Both values can range from 100 nanoseconds (0.100e-6) to 1000 seconds

(1.0e3). Set on = TRUE to start the pulsed output modulation.

int fnLSW_SetPulseOnTime(DEVID deviceID, float pulseontime)

This function is used to set the length of the RF pulse on time of the device’s

internal pulse switching. The pulseontime parameter is the length of the pulse on

time (switch 1 active) in seconds, with a 100 nanosecond minimum. This function

is not recommended for general use. Instead use the fnLSW_SetFastPulsedOutput

function.

int fnLSW_SetPulseOffTime(DEVID deviceID, float pulseofftime)

This function is used to set the length of the RF pulse off time of the device’s

internal pulse switching. The pulseofftime parameter is the length of the pulse off

time (switch 2 active) in seconds, with a 100 nanosecond minimum. The

repetition period of the pulse modulation is equal to pulseontime + pulseofftime.

This function is not recommended for general use. Instead use the

fnLSW_SetFastPulsedOutput function.

int fnLSW_EnableInternalPulseMod(DEVID deviceID, bool on)

This function is used to turn on and off the internal pulse switching. If on = TRUE

the switch will switch the RF output between switch 1 and switch 2 according to

the values set for the pulse on time and pulse off time using either the

API Instructions

Lab Brick RF Switch API

8
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

fnLSW_SetFastPulsedOutput function or the functions to set pulse on and off

time directly . To stop the internal pulse switching, set on = FALSE. Always

disable internal pulse switching before setting the pulse on and off time using the

fnLSW_SetPulseOnTime and fnLSW_SetPulseOffTime functions.

int fnLSW_SaveSettings(DEVID deviceID)

The Lab Brick RF Switches can save their settings, and then resume operating

with the saved settings when they are powered up. Set the desired parameters,

then use this function to save the settings.

Functions – Reading parameters from the RF Switch

int fnLSW_GetNumSwitches (DEVID deviceID)

This function returns the number of switches in the selected device. This is a read

only value.

int fnLSW_GetActiveSwitch (DEVID deviceID)

This function returns the current switch connection of the selected device. This

value may differ from the current switch setting when an external signal is used to

control the switch, or when a switch pattern is running, or during pulse mode

operation. Note that for rapidly changing switch connections due to an external

signal, switch patterns or pulse mode operation the value returned by the

GetActiveSwitch function may not be a useful indicator of the actual switch

connection since the value returned represents the switch connection at the last

status report which is asynchronous with respect to the call to the

GetActiveSwitch function.

int fnLSW_GetSwitchSetting (DEVID deviceID)

This function returns the current switch setting of the selected device. In normal

operation, this value is the same as the active switch, except in the conditions

described above.

int fnLSW_GetUseExternalControl (DEVID deviceID)

This function returns a non-zero value if the Lab Brick RF Switch has been set to

use an external signal to control the switches.

float fnLSW_GetPulseOnTime(DEVID deviceID)

This function returns the pulse on time, which is the length of time that RF input

is connected to output switch 1 when internal pulse modulation is operating, in

seconds.

float fnLSW_GetPulseOffTime(DEVID deviceID)

This function returns the pulse off time, which is the length of time that RF output

is connected to switch 2 when internal pulse modulation is operating, in seconds.

The pulse repetition period is equal to the pulse on time added to the pulse off

time.

int fnLSW_GetPulseMode(DEVID deviceID)

This function returns an integer value which is 1 when the RF Switch’s internal

pulse modulation is active, or 0 when the internal pulse modulation is off.

API Instructions

Lab Brick RF Switch API

9
Vaunix Technology Corporation
7 New Pasture Rd
Newburyport, MA 01950
www.Vaunix.com +1-978-662-7839
Vaunixsales@Vaunix.com

int fnLSW_GetHasFastPulseMode(DEVID deviceID)

This function is included for compatibility with software developed for other Lab

Brick products. All Lab Brick RF Switches have fast pulse mode switching.

int fnLSW_GetPatternLength (DEVID deviceID);

This function returns an integer value which is the number of elements in the

switch pattern. Currently, the maximum pattern length is 4. A pattern length of 0

indicates that no pattern has been loaded into the Lab Brick RF Switch.

int fnLSW_GetPatternType (DEVID deviceID);

This function returns the current pattern type. A value of 1 indicates that a single

shot pattern was selected, and a value of 2 indicates that a repeating pattern was

selected.

int fnLSW_GetPatternEntrySwitch (DEVID deviceID, int index);

This function returns the switch setting for a particular element in the array of

switch settings that define the switch pattern. The index ranges from 0 to 3. A

value of zero indicates the end of the pattern, while values of 1 to 4 indicate the

switch setting for that step in the pattern.

int fnLSW_GetPatternEntryTime (DEVID deviceID);

This function returns the hold time for a particular element in the array of switch

settings that define the switch pattern. The index ranges from 0 to 3. The integer

value returned is the length of time, in 1 millisecond increments that the switch

will remain at that step in the pattern

